Liutex理论的数学基础

刘超群和俞一飞,美国德州大学阿灵顿分校,2023410
 
Liutex是涡的数学定义,是第三代涡识别方法的核心。本文介绍了Liutex理论的数学基础,包括矩阵运算与向量/张量运算的区别和速度张量的正确表达式。老的表达式用了Hamilton Del V代表速度梯度张量,虽然被数学和流体力学教科书广泛采用,但并不正确,这也许是人类为什么要化一百六十年才找到涡的正确表达式,也就是花了一百六十年才找到Liutex。 本文同时给出速度梯度张量的主表达式和主分解,推导了Q-P-坐标旋转的公式。它们也是新流体运动学的关键。正确的速度梯度张量的散度公式也在本文给出,这可能对开发新的流体力学控制方程极为重要。图1显示对一个经典的Lamb-Oseen涡,只有Liutex显示最精确,用Q-判据和涡量显示涡都不准确。
 
                      
                                  (a)                                                        (b)
                                            
                                  (c)                                                        (d)
 
图1. Lamb-Oseen涡识别比较:(a)Q-判据 (b)涡量 (c) Liutex (d) Liutex 向量代表转轴方向;图中箭头代表流体速度方向
 
 
本期,我们推荐美国德州大学阿灵顿分校刘超群和俞一飞于近期在Journal of Hydrodynamics(第34卷第6期)发表的关于“Liutex理论的数学基础”的特色文章。
Mathematical foundation of Liutex theory,
 

编辑导读

 

涡是流体转动,在宇宙无处不在,也是人类现在面临的重大问题,比如龙卷风,飓风,气候变化,心血管疾病,大气污染,湍流等等没有一个与涡无关。但是自古以来,直到2018年美国UTA(University of Texas at Arlington)刘超群团队在人类历史上首次给出涡的数学定义也就是Liutex之前(见PoF2018, JHD2019),涡始终没有明确的数学定义。赫姆霍兹1858年用涡丝也就是无限小的涡量管(Vorticity Tube)定义涡,我们称之为涡的第一代定义。尽管赫氏理论一百六十多年来为全世界学术界广泛接受,并写在几乎所有流体力学教科书上,比如Wu等涡动力学一书中就定义涡是涡量集中区,又在中国科学发表的文章(2018)中明确定义涡就是涡量管(Vorticity Tube)周围被无旋流包围。但是赫氏理论明显地碰到无可置疑的矛盾。比如层流渠道流的管壁附近涡量很大,但并没有看到任何流体转动或者旋涡。人类开始认识到涡量不代表旋转,是流体转动和剪切的混合物。在过去的四十年多里,人类开发了许多涡识别判据,比如Q-Lambda2, Lambda-Ci,等等,我们称之为涡的第二代定义,但它们都是标量。涡是矢量有方向有旋转轴,人类的常识是矢量不能用一个标量定义。第二代需要阈值来描述涡结构,但阈值是任意的和经验的,不同的阈值会给出完全不同的涡结构。不仅如此,它们都受到不同程度剪切污染,不能准确给出涡的旋转强度和旋转周期。直到2018UTA刘超群团队给出Liutex,也就是涡的第三代定义,其方向是速度梯度矩阵的特征向量,其大小是流体旋转角速度的二倍,人类有史以来才第一次找到涡的准确数学定义,只有Liutex才能给出涡的转轴和精确角速度,自然界的漩涡涡核就是Liutex的极值线或者Liutex线集中区域(不是涡量集中区域)。 湍流里面全是涡,没有涡定义怎么定量研究湍流?这就打开了涡和湍流研究的一扇大门,开辟了涡和湍流定量研究的新纪元。由于涡无处不在,可以预期Liutex会对全球与流体有关的上百个科学研究领域和数万个研究工作者产生巨大影响。JHD周主编提出判别涡的六大准则,第一代第二代所有方法几乎无法回答这六大准则提出的问题,只有第三代也就是Liutex理论能成功地回答所有问题。这一里程碑式的突破已经为各国许多研究领域的学者所证实,包括许多中国学者和欧美科学家。欧美十个国家十五名空间科学家最近在著名的空间科学杂志上发表评论文章,以无可争辩的事实显示只有Liutex才能给出准确的涡强度和涡转动周期。但是这里就有一个令人困惑的问题,那就是为什么人类要用一百六十多年的时间才发现Liutex,也就是为什么要花一百六十多年的时间才给出涡的数学定义?本文给出了合理的回答,原来人们错误地认为是速度梯度,其实不是,速度梯度是。速度梯度矩阵的特征向量就是转轴或者Liutex的方向。是速度梯度的转置,和速度梯度有共同的特征值,但特征向量完全不同,但是人们习惯了用代表速度梯度,这也就是各国学者长期找不到涡数学定义Liutex的主要原因之一。除此之外,刘超群和俞一飞在此文中还仔细推导了坐标轴的Q-旋转和P-旋转的方法和具体公式,速度梯度张量的主分解,尤其是第一次给出速度梯度的散度公式,,这一公式不仅具有极其重要的理论意义,而且为推导新的流体动力学控制方程和Liutex动力学奠定了基石。

主要结论

  1. 二阶张量/矢量一般可以用矩阵表示,但它们是完全不同的概念,前者是唯一的,后者有无数,取决于坐标选择。
  2. 矩阵有加减乘求逆转置,张量/矢量只有点积叉积并矢,二者不是完全等价,我们不能随便丢弃点积符号和并矢符号
  3. 由于
    所以速度梯度定义是许多书搞错了。
  1. 速度梯度的主张量和主分解是:
    也就是转动拉伸和剪切
  1. 为了得到速度梯度张量的主张量,我们需要Q-旋转和P-旋转,本文提供了Q-旋转和P-旋转的详细推导,见方程(43)和(46)
  2. Liutex方向是的特征向量,不是的特征向量,这也许是为什么人类要花一百六十年才找到Liutex(也就是涡精确的数学定义)的主要原因之一。Liutex大小见方程(35)
  3. 本文给出速度梯度张量的散度方程(64),定理2 对我们进一步根据Liutex的新的流体运动学去推导流体力学控制方程有极大的指导意义。

作者简介

刘超群从清华大学力学系于1968年学士毕业和1981年硕士毕业,1989年在美国科罗拉多大学丹佛分校获得应用数学博士,现在是美国德州大学阿灵顿分校(UTA)杰出终身教授和数值模拟和建模中心主任。他从事流体力学研究,用高阶数值格式做流动转捩和湍流的直接数值模拟(DNS)已经三十多年,出版了十四本书,141篇期刊论文和171篇会议论文,拿到51项研究课题。他是UTA团队的领头人。他是Liutex和第三代涡识别方法的创始人和主要贡献者,包括以Liutex为基础各种识别方法,涡量的RS分解,速度梯度张量的UTA R-NR 分解和转动-拉伸-剪切的主分解。他也是基于Liutex的新流体运动学的创始人。

俞一飞从2018年于南京航空航天大学工程力学专业本科毕业,现于德州大学阿灵顿分校攻读博士,师从刘超群教授。主要从事涡识别,流动稳定性,objective vortex等方面的研究。已发表期刊论文、会议论文十余篇。

JHD B辑目录2023年第35卷第1期

CONTENTS

SPECIAL COLUMN ON THE 33RD NCHD-SECOND PART (GUEST EDITOR ZHENG MA)

High-fidelity numerical simulation of unsteady cavitating flow around a hydrofoil
Nan Xie, Yu-meng Tang, Yang-wei Liu(1)
Experimental evidence for the mechanism of subcritical vortex-induced vibration
Zhen Lyu, Wei-wei Zhang(17)
A multi-fidelity prediction model for vertical bending moment and total longitudinal stress of a ship based on composite neural network
Cai-xia Jiang, Yu-bo Liu, Zi-yuan Wang, Shuai Chen, Sheng-ze Cai, Qi Gao, Xue-ming Shao(27)

SPECIAL COLUMN ON THE 4TH NATIONAL SYMPOSIUM ON CAVITATION FLOWS (NSCF-2022) (GUEST EDITOR BEN-LONG WANG)

Transient interactions between bubbles and a high-speed cylinder in underwater launches: An experimental and numerical study
Sai Zhang, Qi-Hang Chen, Chang Liu, A-Man Zhang, Shuai Li(36)
Experimental and numerical investigation on the gas leakage regime for ventilated tail cavity of an underwater vehicle
Xiao-bo Quan, Shao-hua Cheng(46)
Numerical study of the kinematic and acoustic characteristics of bubble clusters
Fu-qiang Deng, Di Zhao, Ling-xin Zhang, Xue-ming Shao(61)
Non-spherical symmetry development of underwater shock waves created by laser-induced breakdown
Ying-xue Wang, Di-xi Han, Jian-hua Liu, Qiang Zhong, Zhi-feng Yao, Ruo-fu Xiao, Fu-jun Wang(76)

ARTICLES

Omega-Liutex method for the interaction among wave, current and fixed vertical cylinder
Bo Han, Zhi Pan, Wei-wen Zhao, De-cheng Wan(83)
Characterization of vortex structures with self-excited oscillations based on Liutex-Omega vortex identification method
Dong-dong Wang, Zhaohui Wang, Yi-wei Fan, Xiao Sun, Quanjie Gao(95)
Vortex analysis of water flow through gates by different vortex identification methods
Chun-ying Shen, Rui-guo Yang, Shan Qing, Shi-hua He(112)
Numerical and experimental study on the hydraulic characteristics of a vertical axial pump under various clearances of flare tube
Jia-qi Chen, Zhi-kui He, Zhi-yang Hu, Hong-bo Shi, Xikun Wang(125)
Evaluation and optimization of a hybrid wave energy converter using excited motion response in two degrees of freedom
Binzhen Zhou, Yu Wang, Jianjian Hu, Peng Jin, Lei Wang(145)
Discussion on the extended form of internal solitary wave models between two typical stratification systems
Jiu-ming Zhang, Li Zou, Tie-zhi Sun, Zong-bing Yu, Hao Wang(155)
Numerical research on slamming characteristics of aircraft landing on water
Dao-sheng Ning, Ya-jun Shi, Gui-yong Zhang, Heng Wang, Huan Hu, Zhi-fan Zhang(171)

LETTERS

Some notes on numerical investigation of three cavitation models through a verification and validation procedure
Lin-feng Deng, Yun Long, Huai-yu Cheng, Bin Ji(185)

Journal of Hydrodynamics, Vol. 34 Annual Classified Catalog (2022)(191)
Editorial Message(198)

JHD B辑目录2022年第34卷第6期

CONTENTS

FEATURE ARTICLE

Mathematical foundation of Liutex theory
Chaoqun Liu, Yifei Yu(981)

SPECIAL COLUMN ON THE 33RD NCHD-FIRST RART (GUEST EDITOR ZHENG MA)

An overview of flow field computational methods for
hydrodynamic noise prediction
Wei-wen Zhao, Zhi Pan, Lian-jie Yu, De-cheng Wan(994)
Computation method and control strategy of rotating separation flows in hydraulic machinery
Chao-yue Wang, Fu-jun Wang, Hao Wang, Hao-ru Zhao, Zhi-feng Yao, Ruo-fu Xiao(1006)
Numerical study on formation of a splash sheet induced by an oscillating bubble in extreme vicinity to a water surface
Guang-hang Wang, Yan Du, Zhi-jian Xiao, Jian Huang, Zhi-ying Wang, Hong-chen Li, Jing-zhu Wang, Yi-wei Wang(1021)
Numerical simulation of multi-scale cavitating flow with special emphasis on the influence of vortex on micro‑bubbles
Ming-zhe Zhou, Zi-yang Wang, Xiao-rui Bai, Huai-yu Cheng, Bin Ji(1032)

ARTICLES

Hydraulic jump and choking of flow in pipe with a change of slope
Rui Zeng, S. Samuel Li(1044)
Near-bed hydrodynamics associated with the entrainment of coarse particles at different protrusion heights
Yushu Xie, Bruce W. Melville, Asaad Y. Shamseldin, Colin N. Whittaker, Yifan Yang(1067)
Shape optimization design of a heaving buoy of wave energy converter based on fully parametric modeling and CFD method
Shuo Huang, Wei-qi Liu, Kai Wang, Tie-cheng Wu, Tian-hui Liu(1081)
Dispersion features of pollutants in a compound channel with vegetated floodplains
Yan-fang Zhao, Jing-jing Fan, Wei-jie Wang, Han-qing Zhao, Fei Dong, Zhen Han, Shi-yan Wang(1095)
A decomposition method of vortex identification and its application in side channel pumps
Ke Chen, Fan Zhang, Yu-jian Fang, Desmond Appiah, Shou-qi Yuan, Feng Hong(1106)
Measurement and characterization of bulk nanobubbles by nanoparticle tracking analysis method
Xiao-tong Ma, Ming-bo Li, Chao Sun(1121)
Measurement of two-phase velocities in bubble flows using laser Doppler velocimetry
Ling-xin Zhang, Xin-sheng Cheng, Han Tu, Qi Gao, Xue-ming Shao, Xiang-Wei Liao, Liang Zhao(1134)

LETTERS

A Liutex-based subgrid stress model for large-eddy simulation
Yuan Ding, Bi-yu Pang, Bo-wen Yan, Yi-qian Wang, Yu-xuan Chen, Yue-hong Qian(1145)
Effects of oceanic ice cover and density stratification on the propagation of hydroacoustic waves
Ya-dong Liu, Dong-qiang Lu, Ming-song Zou(1151)
Study on the flow field uniformity of hydro-floating ship lift combined type hydraulic-driven system based on the residual energy theory
Bo Wu, Ya-an Hu, Shu Xue(1156)
Editorial Message(1162)

JHD B辑目录2022年第34卷第5期

CONTENTS

REVIEW ARTICLE

Smoothed particle hydrodynamics: Methodology development and recent achievement
Chi Zhang, Yu-jie Zhu, Dong Wu, Nikolaus A. Adams, Xiangyu Hu(767)

ARTICLES

Studying turbulence structure near the wall in hydrodynamic flows: An approach based on the Schur decomposition of the velocity gradient tensor
Christopher J. Keylock(806)
Coupling potential and viscous flow models with domain decomposition for wave propagations
Wen-jie Zhong, Wen-tao Wang, De-cheng Wan(826)
De-noising of radiation pressure signal generated by bubble oscillation based on ensemble empirical mode decomposition
Xiang-hao Zheng, Yu-ning Zhang(849)
Numerical study on transom stern ventilation and resistance of high-speed ship in calm water
Hui Wang, Ren-chuan Zhu, Meng-xiao Gu, Le Zha(864)
Suppression of self-sustained oscillations of incompressible flow over aperture-cavities and its mechanisms
Wen-wen Zhang, Rong-wu Xu, Lin He, Jia Duan(876)
Large eddy simulation of cloud cavitation and wake vortex cavitation around a trailing-truncated hydrofoil
Ting-yun Yin, Giorgio Pavesi, Ji Pei, Shou-qi Yuan, Xing-cheng Gan(893)
Aeration performances and air-water mass transfer on steep stepped weirs with horizontal and inclined steps
Yvan Arosquipa Nina, Rui Shi, Davide Wüthrich, Hubert Chanson(904)
Innovative configuration of vertical slot fishway to enhance fish swimming conditions
Mohammad Ahmadi, Alban Kuriqi, Hossein Mohammad Nezhad, Amir Ghaderi, Mirali Mohammadi(917)
Purification efficiency of ecological spur dikes for river pollutants in different geometric arrangements: Experiments and numerical modeling
Yi-tian Chen, Xiao-ling Wang, Song-min Li, Ya-zhi Zheng, Guang-yao Dong(934)
Theoretical calculation of high-pressure CO2 jet in cases of composite rock-breaking based on span-wagner equation of state
Xian-peng Yang, Can Cai, Xiao-hua Chen, Pei Zhang, Xin Zeng, Chi Peng, Yingfang Zhou(948)

LETTERS

A letter for objective Liutex
Yifei Yu, Yi-qian Wang, Chaoqun Liu(965)
Error evaluation of binocular vision method for reconstructing breaking wave surface
Qian Wang, Hao-cheng Lu, Chang-ze Zhao, Hua Liu(970)
Experiments and calculations of wave breaking and evolution of wave groups with high steepness
Wen-yang Duan, Kun Zheng, Bin-bin Zhao(975)

旋成体湍流噪声的壁面模化大涡模拟

引用格式:Zhou, Z., Xu, Z., Wang, S. et al. Wall-modeled large-eddy simulation of noise generated by turbulence around an appended axisymmetric body of revolution. J Hydrodyn 34, 533–554 (2022). 
DOI:https://doi.org/10.1007/s42241-022-0062-z
Share this article:https://rdcu.be/cWufk

大涡模拟是新一代计算流体力学软件的核心工具,有望应用于工程湍流非定常特征和水动力噪声研究。但是,大涡模拟所需的网格量约正比于雷诺数的平方,是其用于复杂几何边界高雷诺数工程湍流的重要困难。壁面模化大涡模拟通过引入近壁流动模型避免完全解析近壁流动,是突破高雷诺数壁湍流大涡模拟困难的一种途径。现有的近壁流动模型主要用于槽道湍流等标准算例的研究,还很少应用到实际工程模型当中。本文借助非平衡型近壁流动模型,结合Ffowcs Williams与Hawkings声比拟理论,实现了全附体SUBOFF标模湍流噪声的壁面模化大涡模拟。

本文考查了壁面模化大涡模拟预测潜航器非定常涡结构、壁面压力系数、脉动压力等与流动和噪声密切相关量的能力,得到了正确的压力系数沿艇体分布规律和脉动压力的频谱特征,发现非平衡型模型能够反映艇体曲率变化以及附体对流场的影响;考查了艇体横截面的远场噪声偶极子指向性,发现该指向性区别于经典的圆柱绕流辐射噪声指向性。定量的分析表明,该指向性来自于侧向力与升力偶极子的相消干涉与相长干涉。本文的结果表明壁面模化大涡模拟可以预测流场中的非定常流动特征和远场噪声指向性的机理,是研究潜航器湍流脉动量和声场的可能途径。

图1 潜航器附近的瞬时流场结构

图2  艇体横截面的瞬时声场

通讯作者简介:
 

何国威,中国科学院力学研究所学术所长、学术委员会主任,中国科学院院士、研究员。长期从事湍流和计算流体力学的研究,提出的湍流时空关联的EA模型和大涡模拟的时空关联方法,被美国物理学会评价为对理解湍流的时空关联和发展时间精准的湍流模型做出了基本(fundamental)贡献。主要学术成果发表在《Annu. Rev. Fluid Mech.》,《J. Fluid Mech.》,《Phys. Rev. Fluids》,《J. Comput. Phys.》,《Phys. Rev. Lett.》等期刊上。曾获国家杰出青年科学基金,现任美国物理学会《Phys. Rev. Fluids》杂志副主编,中国力学学会《Acta Mech. Sin.》副主编,中国力学学会期刊《Theor. Appl. Mech. Lett.》主编。

王士召,中国科学院力学研究所研究员。主要从事湍流与计算流体力学研究,相应工作发表于《J. Fluid Mech.》,《J. Comput. Phys.》,《AIAA J.》等流体力学重要期刊。主持国家自然科学基金委优秀青年科学基金项目、国家数值风洞工程基础研究重点课题等,任《Acta Mech. Sin.》和《力学进展》青年编委,中国力学学会湍流与流动稳定性专业组成员,中国工业与应用数学学会数学力学专业委员会委员,中国空气动力学会计算空气动力学委员会委员。

 
第一作者简介:
 

周志腾,中国科学院力学研究所在读博士研究生。周志腾于2018年进入中国科学院力学研究所攻读博士学位,从事湍流噪声领域相关的科研工作,曾针对四极子声源穿出FW-H积分面导致的虚假噪声问题,利用格林函数的渐近展开,提出了一种四极子噪声修正模型。该模型克服了传统模型在部分马赫数下计算结果发散的问题,并成功应用在钝体绕流的远场噪声计算当中。相关成果已发表于《AIAA J.》,《Theor. App. Mech. Lett.》等期刊。

 
第二作者简介:
 

许昭越,中国科学院力学研究所在读博士研究生。2018年毕业于西北工业的航空学院后加入力学所非线性国家重点实验室攻读博士学位,从事计算流体力学相关研究。主要工作内容有:复杂边界的近壁速度重构、数据驱动量纲分析。已在《J. Comput. Phys.》,《Phys. Fluids》等流体力学期刊上发表学术论文5篇。担任《Phys. Fluids》,《Acta Mech. Sin.》期刊的审稿人。