Rotex.c (2338 downloads) |
In the paper “The visualization of turbulent coherent structure in open channel flow” by Bai et al. (2019) -( https://doi.org/10.1007/s42241-019-0026-0 , share this article https://rdcu.be/b457g)
a code the author used is available above.
代码完成功能: 用于计算流场中的Liutex值
用法:同OpenFOAM中vorticity,Q等后处理工具,执行Rotex -case XXX
涡是流体力学中的重要现象,但迄今为止,人们对涡的认识还很模糊,还未能给出一个有物理意义和被广泛接受的定义方法。多年来人们尝试了多种方法,早期曾采用涡量方法,但后来发现涡量和涡结构的关联性不高。后来,又发展了多种以速度梯度张量特征值为代表的涡识别方法,如常用的Q,和等。但这些方法在实际使用过程中,研究者需要不停地调整阈值以获得一个主观确定的等值面效果。从2014年开始,美国德州大学阿灵顿分校的刘超群教授团队提出了涡识别方法和Liutex向量方法。涡识别方法定义为速度梯度张量反对称部分比上对称和反对称部分之和,当比值大于0.5可以认为旋转占优,其应用建议在0.52~0.6之间取值,可使得识别的涡结构基本保持不变。Liutex向量的核心思想是将涡量进一步分解为旋转部分(R)和非旋转部分(S),其中新分解出来的R部分代表流体运动的刚体旋转部分,其认为该空间矢量可用于表征旋涡结构。Liutex 给涡的研究提供了新的视角。